Global optimization of expensive-to-evaluate functions: an empirical comparison of two sampling criteria

نویسندگان

  • Julien Villemonteix
  • Emmanuel Vázquez
  • Maryan Sidorkiewicz
  • Eric Walter
چکیده

In many global optimization problems motivated by engineering applications, the number of function evaluations is severely limited by time or cost. To ensure that each of these evaluations usefully contributes to the localization of good candidates for the role of global minimizer, a stochastic model of the function can be built to conduct a sequential choice of evaluation points. Based on Gaussian processes and Kriging, the authors have recently introduced the informational approach to global optimization (IAGO) which provides a onestep optimal choice of evaluation points in terms of reduction of uncertainty on the location of the minimizers. To do so, the probability density of the minimizers is approximated using conditional simulations of the Gaussian process model behind Kriging. In this paper, an empirical comparison between the underlying sampling criterion called conditional minimizer entropy (CME) and the standard expected improvement sampling criterion (EI) is presented. Classical tests functions are used as well as sample paths of the Gaussian model and an actual industrial application. They show the interest of the CME sampling criterion in terms of evaluation savings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review of Efficient Surrogate Infill Sampling Criteria with Constraint Handling

This paper discusses the benefits of different infill sampling criteria used in surrogate-model-based constrained global optimization. Here surrogate models are used to approximate both the objective and constraint functions with the assumption that these are computationally expensive to compute. The construction of these surrogates (also known as meta models or response surface models) involve...

متن کامل

A Novel Intelligent Water Drops Optimization Approach for Estimating Global Solar Radiation

Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Measurement of solar radiance demands expensive devices to be used. Alternatively, estimator models are used instead. In this paper, a new method based on the empirical equations is introduced to estimate the monthly average daily global solar radiation on a horizontal surface. The proposed method uses Intelligent Water ...

متن کامل

A Meta-heuristic Algorithm for Global Numerical Optimization Problems inspired by Vortex in fluid physics

One of the most important issues in engineering is to find the optimal global points of the functions used. It is not easy to find such a point in some functions due to the reasons such as large number of dimensions or inability to derive them from the function. Also in engineering modeling, we do not have the relationships of many functions, but we can input and output them as a black box. The...

متن کامل

Estimation of Global Solar Irradiance Using a Novel combination of Ant Colony Optimization and Empirical Models

In this paper, a novel approach for the estimation of global solar irradiance is proposed based on a combination of empirical correlation and ant colony optimization. Empirical correlation has been used to estimate monthly average of daily global solar irradiance on a horizontal surface. The Ant Colony Optimization (ACO) algorithm has been applied as a swarm-intelligence technique to tune the c...

متن کامل

Evaluation of a Surrogate Based Method for Global Optimization

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cyclic parameters of the optimization method to get a balance between local and global...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2009